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Abstract
An important feature of Axelrod’s model for culture dissemination or social
influence is the emergence of many multicultural absorbing states, despite
the fact that the local rules that specify the agents interactions are explicitly
designed to decrease the cultural differences between agents. Here we re-
examine the problem of introducing an external, global interaction—the mass
media—in the rules of Axelrod’s model: in addition to their nearest neighbors,
each agent has a certain probability p to interact with a virtual neighbor whose
cultural features are fixed from the outset. Most surprisingly, this apparently
homogenizing effect actually increases the cultural diversity of the population.
We show that, contrary to previous claims in the literature, even a vanishingly
small value of p is sufficient to destabilize the homogeneous regime for very
large lattice sizes.

PACS numbers: 89.75.Fb, 87.23.Ge, 05.50.+q

1. Introduction

Why do people have different opinions given that after repeated interactions some consensus
should emerge? Why are there different cultures given that modern media has apparently
succeeded in transforming the planet into a global village [1]? These are the issues addressed
by Axelrod’s model for the dissemination of culture or social influence [2], which is considered
the paradigm for idealized models of collective behavior which seek to reduce a collective
phenomenon to its functional essence [3].

Building on just a few simple principles, Axelrod’s model provides highly nontrivial
answers to those questions. In Axelrod’s model, an agent—an individual or a culturally
homogeneous village—is represented by a string of F cultural features, where each feature
can adopt a certain number q of distinct traits. The interaction between any two agents takes
place with probability proportional to their cultural similarity, i.e. proportional to the number
of traits they have in common. The result of such interaction is the increase of the similarity
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between the two agents, as one of them modifies a previously distinct trait to match that of
its partner. We note that there are many alternative models of social influence or opinion
formation [4–6] which, similarly to Axelrod’s, focus on the interplay between consensus and
diversity, and which have also been extensively studied by the statistical physics community
(see [7] for a recent review).

Notwithstanding the built-in assumption that social actors have a tendency to become
more similar to each other through local interactions [8, 9], Axelrod’s model does exhibit
global polarization, i.e. a stable multicultural regime [2]. More important, however, at least
from the statistical physics perspective, is the fact that the competition between the disorder
of the initial configuration and the ordering bias of the local interactions produces a nontrivial
threshold phenomenon (more precisely, a nonequilibrium phase transition) which separates in
the space of parameters of the model the globally homogeneous from the globally polarized
regimes [10, 11].

A feature that sets Axelrod’s model apart from most lattice models which exhibit
nonequilibrium phase transitions [12] is the fact that all stationary states of the dynamics
are absorbing states, i.e. the dynamics freezes in the long-time regime [10]. This is so
because, according to the rules of Axelrod’s model, two neighboring agents who do not
have any cultural trait in common cannot interact and the interaction between agents who
share all the cultural traits does not change their cultural features. Hence, at equilibrium
we can safely predict that, regarding their cultural features, any neighbor of a given agent
is either identical to or completely different from it. This is a double-edged sword: on
the one hand, we can easily identify the stationary regime, which is a major problem in
the characterization of nonequilibrium phase transitions [13, 14]; on the other hand, the
dynamics can take an arbitrarily large time to freeze for some parameter settings and initial
conditions [10, 11, 15, 16].

The key ingredient for the existence of a stable globally polarized state is the rule that
prohibits the interaction between completely different agents (i.e. agents which do not have
a single cultural trait in common). This was first pointed out by Kennedy [17] who relaxed
this rule and permitted interactions regardless of the similarity between agents. As a result,
the system evolved until all agents became identical, i.e. the only absorbing states were the
homogenous ones. (There are qF distinct absorbing homogenous configurations.) In addition,
Klemm et al [18] have shown that the introduction of external noise to the dynamics so that
a single trait of an arbitrarily chosen agent was changed at random ends up destabilizing
the polarized state. Moreover, expansion of communication modeled by increasing the
connectivity of the lattice [19, 20] or by placing the agents in more complex networks [21]
(e.g. small-world and scale-free networks) also resulted in cultural homogenization.

It should be mentioned, however, that other models of social influence seem to yield a
more robust polarized state. For instance, the frequency bias mechanism [22, 23] for cultural
or opinion change assumes that the number of people holding an opinion is the key factor for an
agent to adopt that opinion, i.e. people have a tendency to espouse cultural traits that are more
common in their social environment. Parisi et al [24] have replaced the rules of Axelrod’s
model by the frequency bias mechanism (essentially, a majority rule) and found a stable
polarized state for small lattices. Since similarity plays no role in the agents’ interactions, the
frequency bias mechanism is naturally robust to noise.

The impression is then that the globally polarized (multicultural) state is very frail, being
disrupted by any (realistic or not) extension of the original model. In view of this, it came as
a big surprise when Shibanai et al [25] found that the introduction of a homogeneous media
effect (i.e. it is the same for all agents) aiming at influencing the agents’ opinions actually
favors polarization. This finding is at odds with the common-sense view that mass media,
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such as newspapers and television, are devices that can be effectively used to control people’s
opinions and so homogenize society. Of course, the effect of media in real personal networks
is complicated and seems to follow the so-called ‘two-step flow of communication’ in which
the media affect opinion leaders first, who then influence the rest of the population [26]. In
fact, personal networks seem to serve as a buffer for the media effect.

Although this counterintuitive effect of the mass media has been extensively investigated
(see, e.g., [27–31]), there is still no first-principles explanation for it. The research has focused
mostly on the search for a threshold on the intensity of the media influence such that above
that threshold, the population would become polarized and below it, the population would
becomes culturally homogeneous. In this contribution we show that such threshold is in fact
an artifact of finite lattices: when a careful analysis of the finite-size effects is carried out,
we find that even a vanishingly small media influence is sufficient to destabilize the culturally
homogeneous regime.

The rest of this paper is organized as follows. In section 2 we describe the original
Axelrod’s model, discuss at some length the basic assumptions of the model and introduce the
effect of an external fixed media [27, 28]. In section 3 we present an efficient algorithm to
simulate Axelrod’s model. The simulation results as well as a discussion of our main results
are presented in that section. Finally, in section 4 we present our concluding remarks.

2. Model

In Axelrod’s model each agent is characterized by a set of F cultural features which can take
on q distinct values. Hence, an agent is represented by a string of symbols, e.g. 13 255 in
the case of F = 5 and q = 5. Clearly, for this parameter setting there are only qF = 3125
different cultures. The agents are fixed in the sites of a square lattice of size L × L with
periodic boundary conditions and can interact only with their four nearest neighbors. The
initial configuration is completely random with the features of each agent given by random
integers drawn uniformly from 1 to q. Each time an agent at random (this is the target agent)
is chosen as well as one of its neighbors. These two agents interact with probability equal
to their cultural similarity, defined as the fraction of common cultural features. For instance,
assuming that the target agent is described by the string 13 255 and its neighbor by 13 425,
the interaction occurs with probability 3/5. In case the interaction action is not selected, we
choose another target agent at random and repeat the procedure. An interaction consists of
selecting at random one of the distinct features, and changing the target agent’s trait on this
feature to the neighbor’s corresponding trait. Returning to our example, if the third feature is
chosen the target agent becomes 13 455 and its neighbor remains unchanged. This procedure
is repeated until the system is frozen in an absorbing configuration.

The basic assumption of Axelrod’s model is that similarity is a main requisite for social
interaction and, as a result, exchange of opinions. This is the ‘birds of a feather flock together’
hypothesis which states that individuals who are similar to each other are more likely to interact
and then become even more similar [9]. (A similar assumption has been used to model the
interspecies interactions in spin-glass like model ecosystem [32].) Recent empirical evidence
in favor of this assumption comes from the analysis of Web 2.0 social networks [33]. A study
of a population of over 107 people indicates that people who chat with each other using instant
messaging are more likely to have common interests, as measured by the similarity of their
Web searches, and the more time they spend talking, the stronger this relationship is. We
note, however, that this assumption is disputed by other researchers who argue that people are
attracted to others who resemble their ideal, rather than their actual selves [34].
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To introduce the effect of a global media following the seminal paper by Shibanai et al
[25], we need first to define a virtual agent whose cultural traits reflect the media message. In
[25], each cultural feature of the virtual agent has the trait which is the most numerous in the
population—the consensus opinion. Here we choose to keep the media message fixed from
the outset, so it really models some alien influence impinging on the population. Explicitly,
we generate the culture vector of the virtual agent at random and keep it fixed during the
dynamics. Next, we need to specify how the media interact with the real agents. To do that
we introduce a new control parameter p ∈ [0, 1], which measures the strength of the media
influence. As in the original Axelrod’s model, we begin by choosing a target agent at random,
but now it can interact with the media with probability p or with its neighbors with probability
1 − p. Since we have defined the media as a virtual agent, the interaction follows exactly the
same rules as before. The original model is recovered for p = 0, provided we properly define
the halting criterion of the dynamics, as discussed in the next section.

3. Results

To simulate efficiently Axelrod’s model we make a list of the active agents. An active agent
has at least one feature in common and at least one distinct feature with at least one of its
four nearest neighbors. Clearly, since only active agents can change their cultural features, it
is more efficient to select the target agent randomly from the list of active agents rather than
from the entire lattice. Note that the randomly selected neighbor of the target agent may not
necessarily be an active agent itself. In the case that the cultural features of the target agent
are modified by the interaction with its neighbor, we need to re-examine the active/inactive
status of the target agent, as well as of all its neighbors, so as to update the list of active agents.
The dynamics is frozen when the list of active agents is empty. This is the halting criterion we
mentioned in the last section.

The important point in this halting criterion is that the virtual agent does not enter the
procedure to determine whether a real agent is active or not; otherwise the dynamics would
not freeze. Actually, there are only two situations where the dynamics could freeze in the case
the virtual agent is used in that procedure: in the uniform regime where all agents become
identical to the virtual agent, and in a two-domains regime where one domain is identical to
the virtual agent and the other is completely opposed (there are (q − 1)F distinct realizations
of this possibility). However, since the dynamics does not in general lead to these situations, it
becomes stuck in a trite position in which changes occur due to the interaction with the virtual
agent only. Although it has never been explicitly pointed out, this must have been the halting
criterion used in previous analyses of the effect of media in Axelrod’s model [25, 27–30].

In order to explore fully the dependence of the frozen configuration on the lattice size, in
this contribution we restrict our analysis to the parameter setting F = q = 5, which guarantees
that the model without external field (media) is in the homogeneous phase of its phase diagram
[28]. A feature that sets our results apart from those reported previously in the literature is
that our data points represent averages over at least 103 independent runs for lattices of linear
size up to L = 3000. (For comparison, we note that the results of [27, 28] are derived from
simulations of lattices with L = 40 and 50 independent runs.) This requires a substantial
computational effort, especially in the regime where the number of cultures decreases with
the lattice size since then the time for absorption can be as large as 106 × L2. In the figures
presented in the following, the error bars are smaller or at most equal to the symbol sizes.

For our purposes, the frozen configuration can be characterized by the ratio between the
number of clusters (or cultural domains) S and the lattice area L2. A cluster is simply a
bounded region of uniform culture. In the case of diasporas [19], the two or more cultural
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Figure 1. Ratio g between the number of cultural domains and the lattice area as a function of
the strength of the media influence for L = 50 (�) and 200 (�). The solid line is the result of the
extrapolation of the data to the limit L2 → ∞. The parameters are F = 5 and q = 5.

Figure 2. Logarithmic plot of the ratio g as function of the linear size L of the lattice for (top to
bottom) p = 0.05, 0.04, 0.03, 0.02 and 0.01. The solid straight line is 1/L2, which corresponds
to the value of g in the uniform regime. The parameters are F = 5 and q = 5.

domains (which are characterized by the same culture) are counted separately. We note that
since S is bounded by L2 we have g ≡ S/L2 � 1. In the uniform regime we have S = 1 and so
g = 1/L2. Figure 1 exhibits this measure as a function of the strength of the media influence
p for different lattice sizes. The suitability of the measure g is demonstrated by the fact that
the data converge to well-defined values (solid line in figure 1) as the lattice size is increased.
In other words, S increases with L2 for p not too small. Indeed, from figure 1 it seems that
the measure g vanishes for small p which would indicate the existence of a minimum strength
value pc, above which the uniform regime is destabilized [27–30]. Visual inspection of the
data shown in figure 1 yields pc ≈ 0.03, which agrees with the estimate of [28] (see their
figure 3).

A more careful analysis reveals a different story, however, as shown in figure 2. In fact,
consider the data for p = 0.01, which is well below our initial estimate, pc ≈ 0.03. An
analysis of lattices of sizes up to L = 600 indicates a clear tendency of convergence towards
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Figure 3. Ratio g between the number of cultural domains and the lattice area as function of the
reciprocal of the lattice area 1/L2 for p = 0.02 (�) and 0.01 (◦). The solid lines are the fittings
g = Bp + Ap/L2 and the dashed straight line is the function 1/L2. The parameters are F = 5 and
q = 5.

Figure 4. The ratio between the number of cultural domains and the lattice area for L → ∞
obtained through the extrapolation procedure shown in figure 3 as a function of the strength p of
the media influence. The straight line is the fitting given by equation (1). The parameters are
F = 5 and q = 5.

the uniform regime (i.e. g = 1/L2 fits the data almost perfectly in that range of L), but this
trend changes completely when lattices of sizes greater than L = 1000 are considered. In
this case, rather than vanishing as 1/L2, g tends to a nonzero value when L → ∞. To verify
whether this finding holds true for all values of p we need first estimate the value of g = g (p)

for infinite lattices and nonzero p and then try to figure out the dependence of the extrapolated
value of g on p in the limit p → 0. As suggested by figure 2, direct simulations using small
values of the parameter p would require very large lattice sizes in order to produce significative
deviations from the uniform regime.

Figure 3 illustrates the procedure used to obtain the measure g in the limit L → ∞. The
key point is the use of the fitting function g (p) = Bp + Ap/L2 which describes the data very
well for L > 500: the statistical error in the estimate of Bp = limL→∞ g (p) is less than
2% for all values of p considered here. The solid curve shown in figure 1 was obtained by
following this procedure. Finally, figure 4 presents the dependence of Bp on p. For small p
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the data are fitted very well by the equation

Bp = lim
L→∞

g(p) = (260 ± 29)p4.38±0.03, (1)

as indicated in the figure. The large value of the power of p may explain why the numerical
simulations yielded a nonzero value for pc: for small p it is virtually impossible to distinguish
the result of equation (1) from zero.

In sum, Axelrod’s model does not exhibit a phase transition for p > 0: the only stable
regime for infinite lattice sizes is the polarized one. Strictly, this conclusion is valid for a
single setting of the control parameters, namely, F = q = 5, but we see no reason why it
should not hold for other values of these parameters as well.

4. Conclusion

In this contribution we have revisited an important extension of Axelrod’s model in which, in
addition to the local interactions between agents, there is a global element—the media—that
influences the agents’ opinions or cultural traits [25]. In stark contrast to the common-sense
opinion that the media effect is to homogenize the society, we find, in agreement with previous
studies [25, 27–30], that the media actually promotes polarization or the diversity of opinions.
However, we have shown that this effect is so powerful that a vanishingly small influence
strength p is sufficient to destabilize the cultural homogenous state for very large lattices. This
finding calls for a re-examination of the claim, which is based on the analysis of small lattices,
that there exists a threshold value pc below which the homogeneous state is stable.

Although our results were obtained for a fixed external field (media), they are expected to
also hold for a site-independent global autonomous field, as in the original media model [25],
as well as for a site-dependent local field [28]. In fact, if the homogeneous state is destabilized
by a uniform field, then chances are that it will also be destabilized by external fields that vary
in time (global media) or in time and space (local media).

A word is in order about a most curious finding presented in [28]: if the parameters q and
F are set such that the frozen configurations are polarized at zero field (i.e. for p = 0), then
the introduction of an external field seems to favor the homogeneous state in the limit p → 0.
Our main objection to that finding is that the parameter setting F = 5 and q = 30 used in that
analysis (see figure 7 of [28]) actually corresponds to the homogeneous regime, rather than
to the polarized one, of the zero-field model (data not shown). The large value of q enhances
the finite size effects and makes the convergence to the uniform regime prohibitively slow for
L > 400, so it would be inadvisable to draw any bold conclusions in such adverse scenario.

At present we have no idea why the media promotes polarization rather than the expected
homogenization. An analysis of the distribution of sizes of the cultural domains as well as of
the distance between domains may provide some clue to this counterintuitive effect. Work in
this line is under way.
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